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ABSTRACT
In this short paper, we address the interpretability of hidden layer
representations in deep text mining: deep neural networks applied
to text mining tasks. Following earlier work predating deep learning
methods, we exploit the internal neural network activation (latent)
space as a source for performing k-nearest neighbor search, looking
for representative, explanatory training data examples with similar
neural layer activations as test inputs. We deploy an additional
semantic document similarity metric for establishing document
similarity between the textual representations of these nearest
neighbors and the test inputs. We argue that the statistical analysis
of the output of this measure provides insight to engineers training
the networks, and that nearest neighbor search in latent space
combined with semantic document similarity measures offers a
mechanism for presenting explanatory, intelligible examples to
users.
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1 INTRODUCTION
In the current wave of human-aware and deep learning-dominated
AI [4], explainability of analyses becomes an important factor for
the acceptance of AI by humans. Yet, with deep learning models be-
coming increasingly complex cognitive architectures, explainability
becomes challenging, and the concept itself is elusive and often
not clearly defined (see e.g. [8] for a critical review). A common
thread running through the various current approaches to making
AI explainable, i.e. transparent to humans, is the desire to monitor
the information a trained network stores internally and deploys
for analyzing new input. Explainable AI leads to a deeper insight
in the nature of cognition, may lead to more accurate systems by
addressing their weaknesses, and may become a necessity in the
light of initiatives such as the upcoming EU General Data Protec-
tion Regulation (GDPR, [3]), where citizens obtain the "right to
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explain" for algorithms working on their data. Since the informa-
tion encoded in machine learning models typically is of a low-level
nature, special steps need to be undertaken, such as making connec-
tions with human-interpretable representations, preferably with
overt semantics. One of the tenets of deep learning is that hidden
layers close to the output layer encode semantically more abstract
information compared to hidden layers close to the input layer.
In deep learning image processing, for instance, visualizations of
higher layers indeed reveal the encoding of higher-order visual
information, such as edges, or human-interpretable concepts like
facial parts (cf. [16]). Such inspectability of the internal data repre-
sentations of a deep neural network allows for a certain amount of
transparency or explainability of the network to users. Engineers,
for instance, may optimize a deep learner by taking a peek at its
internal data representations ([14]). For text mining, transparency
of network-internal representations is not trivial. Usually, input
texts are encoded into vectors with neural word embeddings (pro-
duced by e.g. word2vec [9]). These vectors encode a shallow form
of semantics based on distributional information: two words are
semantically ’similar’ if they occur roughly in the same context.
Neural word embeddings like word2vec are learned with shallow
neural networks. It is hard to imagine what document vector rep-
resentations encode once they get processed by several layers in
a deep learner, and whether the depth of the network impacts the
abstractness of the information encoded at the various hidden lay-
ers. The purpose of this paper is to assess empirically if and how
we can make the information encoded in deep neural networks for
text analysis available for human inspection. Specifically, we are
interested in case-based explainable text mining: explanations for
analyses of test data based on similarities with training data. This
paper addresses the following research questions:

(1) Can we make the internal activations of deep learning networks
for textual analysis human-interpretable, i.e. translate them back
to textual representations?

(2) How can we leverage the information encoded in a neural network
for explanatory purposes, for both engineers and end-users?

We demonstrate that by applying nearest neighbor methods, we
can indeed associate internal network activations with human-
interpretable text: the text of nearest neighbors in the training data.
We argue that a statistical comparison of the semantic distance of
these nearest neighbors with input cases provides important in-
sights to engineers pertaining to training/test data matches. Further,
we demonstrate the explanatory use of these nearest neighbors for
end-users. We stress from the onset that our results are initial, and
need to be manually evaluated by humans; yet, our results display
many interesting observations, and give rise to new research ques-
tions. As for related work, in [8], an overview of various approaches
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to explainable AI is presented, with critical remarks on the proper
delineation of the topic. The topic of explainability is diverse, and
-given our current lack of understanding what good explanations
actually are- it is not surprising that there is an abundance of differ-
ent approaches. Attention-based models like [10] attempt to model
the selective focus of deep learners on certain ’important’ aspects
of input data over time. Related approaches like [17] identify latent
factors in input data for explainable recommendation engines. Our
work builds upon the early work of [1], antedating the rise of deep
learning methods, which presents the idea of using internal activa-
tion layers-based nearest neighor search for case-based explanation
of machine learning methods. Our approach explicitly allows for
measuring the dynamics of nearest neighbors in the network: near-
est neighbors may fluctuate across layers, or become stable and
migrate from one layer to another.

2 SEMANTIC DOCUMENT DISTANCE
In [7], a variant of the Earth Movers Distance, especially tailored for
measuring textual similarity, was proposed. This distance measure,
theWordMovers Distance (WMD), takes into account the word2vec
representations of separate words in different documents, and is
proportional to the effort it takes to transform the word2vec repre-
sentations from one document into those of the other document.1
WMD is defined as follows.

WMD (xi ,x j ) = minT ≥0
n∑

i, j=1
Ti j | | xi − x j | |2

subject to
n∑
j=1

Ti j = dai and
n∑
i=1

Ti j = dbj

(1)

Given X ∈ Rd×n , a word2vec embedding for a vocabulary of n
words, with d the dimension of the word2vec embedding, a vec-
tor xi ∈ Rd is the word2vec representation in X of the i-th word.
Further, dai is the normalized frequency of the i-th word in the bag
of word representation da of document a. T ∈ Rn×n is a transport
matrix that determines how much of this frequency mass needs to
be transported between documents a and b in order to minimize
the objective function D: Ti j describes the transport of frequency
mass from dai to dbi . As an example, [7] discusses the following pair
of sentences: Obama speaks to the media in Illinois and The President
greets the press in Chicago.. The semantically close distance between
these two sentences cannot be described by a simple bag-of-words
model alone (describing exact matches). The use of a semantic
distance measure (word2vec-based) alleviates this problem, and
addresses the similarity for thw word pairs (Obama, President);
(speaks, greets); (media, press); and (Illinois, Chicago). We will refer
to the vector space of activations of a neural network, consisting of
the activations of a pre-specified layer in response to input from
lower layers, as latent space. In the latent space for a given training
dataset, we first fit a nearest neighbor tree that determines per
activation vector (for a given training instance) the nearest acti-
vation space neighbors. Subsequently, for all training instances x ,
we determine the nearest neighbor set in the latent space, across
different depths. We reason back from these nearest neighbors to
1word2vec expresses semantic relations between words based on distributional
similarity.

the underlying textual representation in the training data. In order
to evaluate the semantic relation between the input case and its
nearest neigbors at the different layer depths, we apply WMD to
the original input instance text and the text of the nearest neighbor,
and analyze statistically the progression of distance scores across
layers. The k-NN algorithm is outlined in Algorithm 1.

Input :Training data (Xtrain ,ytrain ) and test data
(Xtest ,ytest ), with X data vectors and y the labels;
parameter k for number of nearest neighbors; layer
depth d ; deep learner D; fα,M (x ,d ) obtaining the
activation for input x at network layer d , using the
modelM of trained deep learner D; a word
embedding E.

Output :Per layer, per test case x , the textual representation
N of the nearest neighbor of x in the training data
(W ), and the WMD distance between x and N .

begin
A←− ∅;
W ←− ∅;
L ←− ∅;
Train D on (Xtrain ,ytrain ), deriving modelM .
for x ∈ Xtrain do

A←− A ∪ { fα,M (x ,d )}
L ←− L ∪ {< fα,M (x ,d ),x >}

end
Fit a 1-NN tree to A, yielding fNN : A 7→ A.
for x ∈ Xtest do

N = L( fNN ( fα,M (x ,d )))
W ←−W ∪ {< x ,d,N ,WMD (x ,N ) >}

end
end

Algorithm 1: Latent space k-NN.

3 EXPERIMENTS
We apply a deep neural network to a number of text mining datasets,
with the purpose of ’explaining’ analyses of test data inputs with
representative, semantically related and formally similar training
data examples. Our deep neural network is a generic deep multi-
layer perceptron with 5 hidden activation layers. Its structure is
depicted in Figure 1. We made no effort to optimize its architecture
for the datasets at hand. For every dataset, the network was run
for 100 iterations. It was trained on 80% of the data (with 10-fold
cross-validation), and, once trained, tested on the remaining 20%.
We used a fixed batch2 size of 32. The various activation layers
deploy the ReLU (rectified linear unit) activation function. The net-
work was implemented in Python with the Keras[2] deep learning
library. Our data consists of the 6 datasets listed in Table 1. We
represent every text as the summed word2vec vectors of its words,
which produces a vector of dimension 3003. Once the model has
been trained, the latent-space nearest neighbor search is applied
to produce textual training data correlates for the test data. These
2The number of training examples in a single forward/backward pass of the network
during training.
3Our word2vec model is based on pre-trained, 300-dimensional Google News vectors
(GoogleNews-vectors-negative300.bin, see [5]).
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textual nearest neighbors are subjected to the semantic distance
measure WMD, and the distances of the nearest neighbors pro-
duced per layer are analyzed statistically, in order to monitor the
progression of semantic distances across the network.

Figure 1: Our deep MLP.

Dataset Description Labels Instances
Yelp[6] Polarity (sentiment)

labeled restaurant
reviews

2 1,000

Amazon[6] Polarity (sentiment) la-
beled product reviews

2 1,000

IMDB[6] Polarity (sentiment) la-
beled movie reviews

2 1,000

Subj[11] Subjectivity labeled
movie reviews (sen-
tences)

2 10,000

Pol[12] Polarity (sentiment) la-
beled movie reviews
(sentences)

2 10,662

Intent[13] Email snippets (sen-
tences) labeled for
the presence of intent
(speech acts)

2 3,656

Table 1: Datasets.

For analyzing the process of nearest neighbor formation in our
network, we applied a one-tailed Wilcoxon rank sum test. This test
evaluates the null hypothesis that two populations have the same
distribution with the same median. In our case, we compare the
semantic distances of the textual representations (nearest training

neighbors) of two consecutive hidden layers with the text of the
input (test data) cases. For all input test cases, we activate hidden
layers l and l+1, compute the nearest neighbors in latent space, and
gather the WMD distances of these neighbors to the input as two
populations. The Wilcoxon test measures the difference between
these populations. The result of the analysis is given by Table 2. In
Pol, Subj and Intent, semantic distances increases monotonously
up to the highest layer, with statistical significance. In Yelp, this
effect occurs for the first 4 layers; it is virtually absent in IMDB
(only occurring for one pair of layers). In Amazon, we observe it
for two pairs of layers. If, for any pair of layers, the null hypothesis
of the Wilcoxon test is rejected, we typically have a case where
nearest neighbors for a certain layer differ significantly (accord-
ing to the WMD distance) with the input case4. In the context of
WMD, this indicates ’semantic drift’: a larger WMD distance be-
tween two documents means they are semantically more remote.
Nearest neighbors in this case may be semantically related but not
superficially similar to the input cases. On the other hand, if the
null hypothesis of the Wilcoxon test is confirmed, distances remain
fairly constant across two layers l and l + 1. This indicates persis-
tence of nearest neighbors: the network settles strongly on a nearest
neighbor that ’survives’ from l up to l + 1. It suggests the training
data fits quite tightly with the test data, and, if observed in the
initial activation layer (directly following the input layer), nearest
neighbors interpretations of the first layer can be quite literal. The
dynamics of neighbor distance in the network may reveal aspects
of the learning process. For instance, we observed the following
case in the Amazon data (notice the typo in ’satisifed’):

Input: I’m very disappointed with my decision.
Layer 1: I am very pleased with my purchase.
Layer 2: Very satisifed with that.
Layer 3: very disappointed.
Layer 4: very disappointed.
Layer 5: very disappointed.

which shows that, after an initial derailment at the first three layers,
the network manages to restore a plausible nearest neighbor in the
higher layers. The exact study of the dynamics of this phenomenon
is beyond the scope of this paper. A simple heuristic that searches
for the nearest neighbor in the set of neighbors produced by all
layers5 with minimal distance compared to the input case produces
interesting results, however (see Table 3 for semantically similar,
yet orthographically diverse examples).

4 CONCLUSIONS
In this paper, we proposed a nearest neighbor mechanism in the
activation space of deep neural networks for text mining. The mech-
anism deploys a semantic document similarity metric, and identi-
fies statistical patterns of neighbor similarity across hidden layers.
The neighbor search can be operationalized for users by display-
ing the best matching neighbors as explanatory examples. The
use of rank sum tests on pairs of deep layers provides a facility
for inspecting eventual persistence of information across layers,
and may contribute to estimating uncertainty (or confidence) of a

4A negative z-value indicates for a one-tailed test that the second distribution has a
higher median than the first distribution.
5In our current setup: a set of 5 nearest neighbors, since we have 5 hidden layers, each
producing one nearest neighbor.
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Dataset layers 1, 2 layers 2, 3 layers 3, 4 layers 4, 5
Pol p < .001 p < .001 p < .001 p < .004

z=-9.28 z=-6.98 z=-4.30 z=-2.65
Subj p < .001 p < .001 p < .001 p < .04

z=-7.12 z=-5.27 z=-4.50 z=-1.78
Intent p < .001 p < .02 p < .005 p < .02

z=-3.90 z=-2.06 z=-2.62 z=-2.3
Amazon p < .25 p < .03 p < .02 p < .16

z=-0.70 -z=2.0 z=-2.13 z=-0.99
IMDB p < .12 p < .04 p < .49 p < .41

z=-1.19 z=-1.86 z=-0.05 z=-0.25
Yelp p < .002 p < .01 p < .03 p < .27

z=-2.82 z=-2.33 z=-1.89 z=-0.63
Table 2: One-tailedWilcoxon rank sum results for paired ac-
tivation layers.

network in its internal semantic representations. Our results are
currently presented anecdotically, and are in need of human evalua-
tion. Nonetheless, many striking cases emerge from our results. Our
future work will consist of the human evaluation of the use of rank
sum tests for network optimization purposes, and the explanatory
merits of the examples. Additional topics to be addressed in our
future work include the analysis of the semantic relations between
explanatory nearest neighbors and the input cases, the replicability
of our observations for more elaborate, fine-tuned neural network
architectures, and the use of semantic distance measures based on
lexical semantics (such as WordNet). Our current results and code
are available from GitHub ([15]).
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